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Abstract A Runge–Kutta type (four stages) eighth algebraic order two-step method
with phase-lag and its first, second, third and fourth derivatives equal to zero is pro-
duced in this paper. We also study the results of elimination of the phase-lag and its
derivatives on the efficiency of the method. Our studies consist: (1) the construction of
the method, (2) the determination of the local truncation error of the proposed method,
(3) the investigation of the local truncation error analysis using the comparison with
other similar methods of the literature, (4) the computation of the interval of periodic-
ity (stability interval) of the developed method. For this calculation we use a scalar test
equation with frequency different than the frequency of the scalar test equation used
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for the phase-lag analysis, (5) the definition of the error estimation based on methods
with different algebraic orders and (6) the investigation of the effectiveness of the new
obtained method studying the numerical solution of the coupled differential equations
arising from the Schrödinger equation.

Keywords Schrödinger equation · Multistep methods · Interval of periodicity ·
Phase-lag · Phase-fitted · Derivatives of the phase-lag

Mathematics Subject Classification 65L05

1 Introduction

A new Runge–Kutta type two-step four stages method is developed in this paper. The
highlights of the new method are the following:

1. The method is of two-step
2. The method is of eighth algebraic order
3. The method has vanished its phase-lag
4. The method has vanished its first, second, third and fourth derivatives of the

phase-lag

In order to develop a high algebraic order finite difference method the following
characteristics must hold: (1) the method must have many steps, (2) the method must
have many stages or (3) the method must have many steps and many stages (see [52]).
This specific procedure to produce high algebraic order finite difference methods has
as result the following:

– increase the computational time and
– increase the instabilities of the method. The reason for this is that in order the

multistep methods to be applied on a problem, they need at the beginning the
application of unstable methods (for problems with periodical and/or oscillating
solutions) like Runge–Kutta or Runge–Kutta–Nystöm methods.

The above creates serious computational difficulties. Consequently, if we apply the
above mentioned multistep methods to problems with periodical and/or oscillating
solutions, then computational cost is large and the accuracy is small. These problems
are solved with the proposed family of methods since they are two-step methods.

The approximate solution of special second order initial value problems with peri-
odical and/or oscillating solutions of the form:

y′′(x) = f (x, y), y(x0) = q0 and y′(x0) = y′
0 (1)

will be studied in this paper.
The above mentioned problems consist of systems of ordinary differential equations

of second order in which the first derivative y′ does not appear explicitly.
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2 Phase-lag for symmetric multistep finite difference methods

For the numerical solution of the initial value problem (1) let us consider the multistep
methods

m∑

i=−m

ci yn+i = h2
m∑

i=−m

bi f (xn+i , yn+i ) (2)

We have the following remarks:

1. In order the above mentioned method (2) to be applied for the solution of the
problem of the form (1), we have to follow the algorithm

– We define the integration area: [a, b]
– We divide the above integration are into m equally spaced intervals i.e.

{xi }m
i=−m ∈ [a, b].

2. The quantity h is called stepsize of integration and is given by h = |xi+1 − xi |,
i = 1 − m(1)m − 1.

3. The number of steps of the specific used multistep method (2) is equal to 2 m.
Based on this, the specific method can be called 2 m-step method.

Remark 1 We call a multistep method (2) as symmetric multistep method if and only
if c−i = ci and b−i = bi , i = 0(1)m.

Remark 2 The linear operator

L(x) =
m∑

i=−m

ci y(x + i h) − h2
m∑

i=−m

bi y′′(x + i h) (3)

is associated with the multistep method (2), where y ∈ C2.

Definition 1 [1] The multistep method (2) is called of algebraic order k if the associ-
ated linear operator L given by (3) vanishes for any linear combination of the linearly
independent functions 1, x, x2, . . . , xk+1.

If we apply the symmetric 2 m-step method, [(i = −m(1)m], to the scalar test
equation

y′′ = −φ2 y (4)

the following difference equation is produced:

Am(v) yn+m + · · · + A1(v) yn+1 + A0(v) yn

+A1(v) yn−1 + · · · + Am(v) yn−m = 0 (5)

where v = φ h, h is the stepsize and A j (v) j = 0(1)m are polynomials of v.
There is a characteristic equation associated with (5) which is given by:

Am(v) λm + · · · + A1(v) λ + A0(v)

+A1(v) λ−1 + · · · + Am(v) λ−m = 0. (6)
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Definition 2 [16] Consider a symmetric 2 m-step method with characteristic equation
given by (6). We say that this method has an interval of periodicity equal to (0, v2

0) if,
for all v ∈ (0, v2

0), if the roots λi , i = 1(1)2 k of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 m (7)

where θ(v) is a real function of v.

Definition 3 [14,15] The symmetric multistep method with characteristic equation
given by (6) has phase-lag which is equal to the leading term in the expansion of

t = v − θ(v) (8)

The order of phase-lag is q, if the quantity t = O(vq+1) as v → ∞ is hold.

Definition 4 [2] Phase-fitted is called a method if its phase-lag is equal to zero.

Theorem 1 [14] The symmetric 2 m-step method with associated characteristic equa-
tion given by (6) has phase-lag order q and phase-lag constant c given by

− cvq+2 + O(vq+4) = 2 Am(v) cos(m v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v)

2 m2 Am(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v)
.

(9)

Remark 3 In order to calculate the phase-lag for any symmetric 2 m-step multistep
method we use the formula (9).

Remark 4 In our study the investigated method is a symmetric two-step method with
characteristic polynomials A j (v) j = 0, 1. For this case the phase-lag of order q and
the phase-lag constant c are given by:

− cvq+2 + O(v p+4) = 2 A1(v) cos(v) + A0(v)

2 A1(v)
(10)

3 The new high algebraic order four-stages two-step method with vanished
phase-lag and its first, second, third and fourth derivatives

Let us consider the family of two-step four-stages hybrid methods

ŷn+ 1
2

= 1

52

(
3 yn+1 + 20 yn + 29 yn−1

)

+ h2

4992

(
41 fn+1 − 682 fn − 271 fn−1

)

ŷn− 1
2

= 1

104

(
5 yn+1 + 146 yn − 47 yn−1

)

+ h2

4992

(
−59 fn+1 + 1438 fn + 253 fn−1

)
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ỹn = yn − a0 h2
(

fn+1 − 4 f̂n+ 1
2

+ 6 fn − 4 f̂n− 1
2

+ fn−1

)

yn+1 + a1 yn + yn−1 = h2
[

b1 ( fn+1 + fn−1) + b0 f̃n + b2

(
f̂n+ 1

2
+ f n− 1

2

)]

(11)

where fi = y′′ (xi , yi ) , i = −1
(

1
2

)
1 and ai , i = 0, 1 b j j = 0(1)2 are free parame-

ters.
We require the above mentioned Runge–Kutta type method (11) to have the phase-

lag and its first, second, third and fourth derivatives equal to zero (vanishing). Therefore
the following system of equations is obtained:

Phase-Lag(PL) = 1

2

T0

T1
= 0 (12)

First Derivative of the Phase-Lag = ∂ P L

∂v
= T2

T 2
3

= 0 (13)

Second Derivative of the Phase-Lag = ∂2 P L

∂v2 = T4

T 3
3

= 0 (14)

Third Derivative of the Phase-Lag = ∂3 P L

∂v3 = T5

T 4
3

= 0 (15)

Fourth Derivative of the Phase-Lag = ∂4 P L

∂v4 = T6

T 5
3

= 0 (16)

where Tj , j = 0(1)6 are given in the Supplementary Material A.
Solving the above mentioned system of Eqs. (12)–(16), we produce the coefficients

of the new Runge–Kutta type method:

a0 = C0

C1
, a1 = −2

C2

C3
, b0 = 2

C4

C5
,

b1 = −1

3

C6

C5
, b2 = C7

3 C5
(17)

where Ci , i = 0(1)7 are given in the Supplementary Material B.
In the case that the formulae given by (17) are subject to heavy cancellations for

some values of |v| (for example in the case of values of |v| for which the denominators
are near to zero), the following Taylor series expansions should be used:

a0 = − 2

10647
+ 157 v2

1107288
+ 590687 v4

86454832464
+ 43086809 v6

157347795084480

− 1036316339 v8

717977988970482240
− 39143150250741937 v10

29322795451945671067392000

− 94019173388684460139 v12

1581812336096118836596247961600
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− 113724616932817821103 v14

102817801846247724378756117504000

+ 366513529899391607545550707 v16

2215675099784167031436287559323738112000

+ 196504881176501724045496980667 v18

12097586044821551991642130073907610091520000
+ · · ·

a1 = −2 + 157 v10

204422400
+ 47563 v12

736656560640
+ 48493 v14

191530705766400

− 14204527 v16

89636370298675200
− 231159834331 v18

16640095782246064128000
+ · · ·

b0 = 13

30
− 157 v4

212940
− 180137 v6

30694023360
+ 363877 v8

591144153600

− 13398973909 v10

130719706685568000
+ 9936070831 v12

86667165532531584000

+ 24264863264944987 v14

79119495420634473412608000
+ 10558982561489 v16

770644435915270844928000

+ 485800042795331629003 v18

1033325928432020825800152514560000
+ · · ·

b1 = 1

60
− 157 v4

1277640
− 2066021 v6

184164140160
− 25084351 v8

95765352883200

+ 436520401 v10

24509945003544000
+ 2463906123857 v12

1040005986390379008000

+ 66668435065236689 v14

474716972523806840475648000
+ 125226903741859 v16

50862532770407875765248000

− 120305420682918770557 v18

338179394759570452080049913856000
+ · · ·

b2 = 4

15
+ 157 v4

319410
+ 81451 v6

5755129380
− 1680923 v8

855047793600

− 2720580749 v10

19607956002835200
− 290279697863 v12

65000374149398688000

+ 55199831330671 v14

741745269568448188243200
+ 350653779619001 v16

12715633192601968941312000

+ 1200828519750605415419 v18

581245834743011714512585789440000
+ · · · (18)

The behavior of the coefficients of the proposed method is presented in Fig. 1.
In the following we present the local truncation error of the new developed Runge–

Kutta type method (11) (mentioned as ExpT woStepRK T 10) with the coefficients
given by (17)–(18):
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Fig. 1 Behavior of the coefficients of the new proposed method given by (17) for several values of v = φ h
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LTEExpT woStepRK T 10 = 157

204422400
h10

(
y(10)

n + 5 φ2 y(8)
n + 10 φ4 y(6)

n

+10 φ6 y(4)
n + 5 φ8 y(2)

n + φ10 yn

)
+ O

(
h12

)
(19)

4 Comparative local truncation error analysis

In order to study the asymptotic behavior of the local truncation error we consider the
following test problem

y′′(x) = (V (x) − Vc + G) y(x) (20)

where

1. V (x) is a potential function,
2. Vc a constant value approximation of the potential for the specific x ,
3. G = Vc − E and
4. E is the energy,

We will study the local truncation error of the following methods:

4.1 Classical method [(i.e. the method (11] with constant coefficients)

LTECL = 157

204422400
h10 y(10)

n + O
(

h14
)

(21)

4.2 The new proposed method with vanished phase-lag and its first, second, third
and fourth derivatives produced in Sect. 3

LTEExpT woStepRK T 10 = 157

204422400
h10

(
y(10)

n + 5 φ2 y(8)
n + 10 φ4 y(6)

n

+10 φ6 y(4)
n + 5 φ8 y(2)

n + φ10 yn

)
+ O

(
h12

)
(22)

The investigation is based on the following procedure:

– In order to calculate the formulae of the local truncation errors (LTE) we have to
compute the derivatives of the function y which consists of LTE. We present the
expressions of these derivatives, which are based on the test problem (20), in the
Supplementary Material C.

– Based on the previous step new formulae, which are dependent on the energy E
and parameter G [(see (20)], of the local truncation errors are produced.
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– Our investigation is proceeded taking into account two cases for the parameter G:
1. First case: Vc − E = G ≈ 0. By definition this case means that the energy

and the potential are closed each other. Consequently in this case G ≈ 0
and therefore all the terms in the formulae of the local truncation error which
contain powers of G (i.e. which contain G j j ≥ 1) are approximately equal
to zero. Consequently, the only non zero expression in the formulae of the
local truncation error is the expression which contain only the power of G0

i.e. which is free from G. Therefore, the local truncation error for the classical
method (constant coefficients)—which contains only free from G terms—is
equal with the local truncation error of the methods with vanished the phase-
lag and its first, second, third and fourth derivatives. The reason for this is that
the expressions of the terms of the local truncation errors which are free from
G are the same in both cases of methods (the classical and this with vanished
phase-lag and its derivatives). Therefore, for these values of G, the methods
are of comparable accuracy.

2. Second case: G >> 0 or G << 0. Then |G| is a large number. It is easy
to see that the most accurate methods are those with expressions of the local
truncation error which contain minimum power of G.

– Finally we present the asymptotic expressions of the local truncation errors.

The following asymptotic expansions of the local truncation errors are obtained
based on the analysis presented above:

4.3 Classical method

LTEC L = 157

204422400
h10

(
y (x) G5 + · · ·

)
+ O

(
h12

)
(23)

4.4 The new obtained method with vanished phase-lag and its first, second, third and
fourth derivatives produced in Sect. 3

LTEExpT woStepRK T 10 = 157

12776400
h10

(
d4

dx4 g (x) y (x)

)
G2

+ · · · + O
(

h12
)

(24)

From the above equations we have the following theorem:

Theorem 2 – Classical method (i.e. the method (11) with constant coefficients): for
this method the error increases as the fifth power of G.

– Eighth algebraic order two-step method with vanished phase-lag and its first, sec-
ond and third derivatives developed in Sect. 3: for this method the error increases
as the second power of G.
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So, for the approximate integration of the time independent radial Schrödinger equa-
tion the new proposed eighth algebraic order method with vanished phase-lag and its
first, second, third and fourth derivatives is the most efficient from theoretical point of
view, especially for large values of |G| = |Vc − E |.

5 Stability analysis

For our investigation on the stability of the new proposed methods, we consider the
scalar test equation:

y′′ = −ω2 y. (25)

with frequencies ω 	= φ. We note that φ was the frequency for the scalar test equation
for the phase-lag analysis (see Eq. (4)).

If we apply the proposed method (11) with the coefficients given by (17) to the
scalar test Eq. (25), we obtain the following difference equation:

A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (26)

where

A1 (s, v) = 1 + s2b1 + 15 b0a0s4

26
− 3 s6b0a0

208
+ 11 b2s2

104
+ 3 s4b2

832

A0 (s, v) = a1 + s2b0 − 15 b0a0s4

13
+ 63 s6b0a0

104
+ 93 b2s2

52
− 63 s4b2

416
(27)

where s = ω h and v = φ h

Definition 5 (see [16]) A multistep method is called P-stable if it has an interval of
periodicity equal to (0,∞).

Definition 6 A multistep method is called singularly almost P-stable id its interval of
periodicity is equal to (0,∞) − S 1. The term singularly almost P-stable method is
applicable only in the cases where ω = φ i.e. only in the cases when the frequency
of the scalar test equation for the stability analysis is equal with the frequency of the
scalar test equation for the phase-lag analysis.

The s–v plane for the method obtained in this paper is shown in Fig. 2.

Remark 5 We can see two area in the s–v region presented in Fig. 2:

– The method is stable within the shadowed area,
– The method is unstable within the white area.

Remark 6 The models which describe many real problems in Sciences, Engineering
and Technology the corresponding models consist only one frequency. Consequently,
studying the stability in these cases we are interested only for the case where the

1 where S is a set of distinct points
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Fig. 2 s–v plane of the new obtained two-step high order method with vanished phase-lag and its first,
second, third and fourth derivatives

frequency of the scalar test equation for the stability analysis is equal with the frequency
of the scalar test equation for the phase-lag analysis i.e. for the case where ω = φ. For
these cases the study of the s–v plane is limited on the the surroundings of the first
diagonal of the s–v plane i.e. on the areas where s = v. An example of such problem
is the Schrödinger equation.

Based on the above remark, for the new proposed method we investigated the case
where the frequency of the scalar test equation used for the the stability analysis is
equal with the frequency of the scalar test equation used for phase-lag analysis , i.e.
we investigate the case where s = v (i.e. see the surroundings of the first diagonal of
the s–v plane). The result of this investigation is the following: for the case s = v the
new proposed method has interval of periodicity equal to: (0,∞), i.e. is P-stable.

The above study leads to the following theorem:

Theorem 3 The proposed method developed in Sect. 3:

– is of eighth algebraic order,
– has vanished the phase-lag and its first, second, third and fourth derivatives
– has an interval of periodicity equals to: (0,∞), i.e. is P-stable when the frequency

of the scalar test equation used for the phase-lag analysis is equal with the fre-
quency of the scalar test equation used for the stability analysis
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6 Numerical results

6.1 Error estimation

The last decades many methodologies have been proposed in the literature for the
estimation of the local truncation error (LTE) on the numerical solution of systems of
differential equations (see for example [1–57]).

Our technique for the local error estimation is based on the algebraic order of the
methods and on an embedded pair of multistep methods. More precisely our technique
is based on the fact that the maximum algebraic order of a multistep method obtains
highly accurate approximate solutions for periodical and/or oscillatory problems.

For the local error estimation, we use as lower order solution yL
n+1 the method

developed in [58], which is of sixth algebraic order. As higher order solution yH
n+1 we

use the method obtained in this paper - which is of eighth algebraic order. Now, the
local truncation error in yL

n+1 is estimated by

LTE =| yH
n+1 − yL

n+1 | (28)

The estimated step length for the (n + 1)st step, which would give a local error
equal to acc, is given by

hn+1 = hn

( acc

LTE

) 1
q

(29)

where q is the algebraic order of the method, hn is the step length used for the nth step
and acc is the requested accuracy of the local error.

Remark 7 The lower algebraic order solution yL
n+1 is the basis for the local truncation

error estimate. Considering that the estimation of the local error is less than acc, we
use the well known procedure of performing local extrapolation. Thus, although an
estimation of the local error is controlled in lower algebraic order solution yL

n+1, it is
the higher algebraic order solution yH

n+1 which is accepted at each point.

6.2 Coupled differential equations

The mathematical models of many problems can be transferred into a coupled differ-
ential equations of the Schrödinger type. Problems of this kind can be found in

1. quantum chemistry,
2. material science,
3. theoretical physics,
4. atomic physics,
5. physical chemistry,
6. theoretical chemistry and
7. chemical physics
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We write the close-coupling differential equations of the Schrödinger type as:

[
d2

dx2 + k2
i − li (li + 1)

x2 − Vii

]
yi j =

N∑

m=1

Vim ymj (30)

for 1 ≤ i ≤ N and m 	= i .
For our numerical tests we consider the case in which all channels are open. So we

have the following boundary conditions (see for details [59]):

yi j = 0 at x = 0 (31)

yi j ∼ ki x jli (ki x)δi j +
(

ki

k j

)1/2

Ki j ki xnli (ki x) (32)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respectively.

Remark 8 The produced method can also be used for the case of closed channels.

Our investigation is based on the detailed analysis obtained in [59]. We define a
matrix K ′ and diagonal matrices M , N as:

K ′
i j =

(
ki

k j

)1/2

Ki j

Mi j = ki x jli (ki x)δi j

Ni j = ki xnli (ki x)δi j

Based on the above we can write the asymptotic condition (32) as:

y ∼ M + NK′ (33)

Remark 9 Detailed description on the problem one can find in [59]. There is described
one the most well-known methods for the numerical solution of the coupled differential
equations arising from the Schrödinger equation. This is the Iterative Numerov method
of Allison [59].

The rotational excitation of a diatomic molecule by neutral particle impact is a real
problem for which its mathematical model can be transferred to close-coupling differ-
ential equations of the Schrödinger type. This problem occurs frequently in quantum
chemistry, theoretical physics, material science, atomic physics and molecular physics.
Denoting, as in [59], the entrance channel by the quantum numbers ( j, l), the exit chan-
nels by ( j ′, l ′), and the total angular momentum by J = j + l = j ′ + l ′, we find
that

[
d2

dx2 + k2
j ′ j − l ′(l ′ + 1)

x2

]
y J jl

j ′l ′ (x)

= 2μ

h̄2

∑

j ′′

∑

l ′′
< j ′l ′; J | V | j ′′l ′′; J > y J jl

j ′′l ′′(x) (34)
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where

k j ′ j = 2μ

h̄2

[
E + h̄2

2I

{
j ( j + 1) − j ′( j ′ + 1)

}]
(35)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the
moment of inertia of the rotator, and μ is the reduced mass of the system.

As analyzed in [59], the potential V can be expanded as

V (x, k̂ j ′ j k̂ j j ) = V0(x)P0(k̂ j ′ j k̂ j j ) + V2(x)P2(k̂ j ′ j k̂ j j ), (36)

and the coupling matrix element may then be written as

< j ′l ′; J | V | j ′′l ′′; J >= δ j ′ j ′′δl ′l ′′ V0(x) + f2( j ′l ′, j ′′l ′′; J )V2(x) (37)

where the f2 coefficients can be obtained from formulas given by Bernstein et al. [60]
and k̂ j ′ j is a unit vector parallel to the wave vector k j ′ j and Pi , i = 0, 2 are Legendre
polynomials (see for details [61]). The boundary conditions are

y J jl
j ′l ′ (x) = 0 at x = 0 (38)

y J jl
j ′l ′ (x) ∼ δ j j ′δll ′ exp[−i(k j j x − 1/2lπ)]

−
(

ki

k j

)1/2

S J ( jl; j ′l ′) exp[i(k j ′ j x − 1/2l ′π)] (39)

where the scattering S matrix is related to the K matrix of (32) by the relation

S = (I + iK)(I − iK)−1 (40)

In order to compute the cross sections for rotational excitation of molecular hydro-
gen by impact of various heavy particles we need an algorithm which must include a
numerical method for step-by-step integration from the initial value to matching points.
The specific algorithm is based on an similar algorithm which has been obtained for
the numerical tests of [59].

For numerical purposes we choose the S matrix which is calculated using the
following parameters

2μ

h̄2 = 1000.0,
μ

I
= 2.351, E = 1.1,

V0(x) = 1

x12 − 2
1

x6 , V2(x) = 0.2283V0(x).

As is described in [59], we take J = 6 and consider excitation of the rotator from
the j = 0 state to levels up to j ′ = 2, 4 and 6 giving sets of four, nine and sixteen
coupled differential equations, respectively. Following the procedure obtained by
Bernstein [61] and Allison [59] the potential is considered infinite for values of x less
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Table 1 Coupled differential equations

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2 × 10−3

9 0.014 23.51 5.7 × 10−2

16 0.014 99.15 6.8 × 10−1

Method II 4 0.056 1.55 8.9 × 10−4

9 0.056 8.43 7.4 × 10−3

16 0.056 43.32 8.6 × 10−2

Method III 4 0.007 45.15 9.0 × 100

9

16

Method IV 4 0.112 0.39 1.1 × 10−5

9 0.112 3.48 2.8 × 10−4

16 0.112 19.31 1.3 × 10−3

Method V 4 0.448 0.14 3.4 × 10−7

9 0.448 1.37 5.8 × 10−7

16 0.448 9.58 8.2 × 10−7

Real time of computation (in seconds) (RTC) and maximum absolute error (MErr) to calculate | S |2 for
the variable-step methods Method I–Method V. acc = 10−6. We note that hmax is the maximum stepsize

than some x0. The wave functions then zero in this region and effectively the boundary
condition (38) may be written as

y J jl
j ′l ′ (x0) = 0 (41)

For the numerical solution of this problem we have used the most well known
methods for the above problem:

– the Iterative Numerov method of Allison [59] which is indicated as Method I,
– the variable-step method of Raptis and Cash [62] which is indicated as Method

II,
– the embedded Runge–Kutta Dormand and Prince method 5(4) [51] which is indi-

cated as Method III,
– the embedded Runge–Kutta method ERK4(2) developed in Simos [63] which is

indicated as Method IV,
– the new developed embedded two-step method which is indicated as Method V

The real time of computation required by the methods mentioned above to calculate
the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled differential
equations is presented in Table 1. In the same table the maximum error in the calculation
of the square of the modulus of the S matrix is also presented. In Table 1 N indicates
the number of equations of the set of coupled differential equations.
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7 Conclusions

A family of eighth algebraic order two-step methods was investigated in this paper.
The main subjects was:

1. the study of the vanishing of the phase-lag and its first, second, third and fourth
derivatives

2. the investigation of the comparative local truncation error analysis
3. the study of the stability of the proposed method using a scalar test equation which

uses a frequency different than the frequency used by the scalar test equation for
the phase-lag analysis

4. the computational effectiveness of the new produced method on the numerical
solution of the coupled Schrödinger equations.

Based on the above mentioned results, it is easy to see the efficiency of the new
obtained method for the numerical solution of the Schrödinger equation related prob-
lems.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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